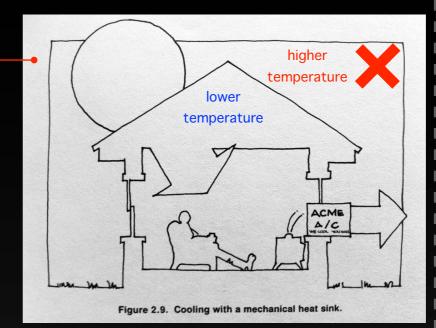
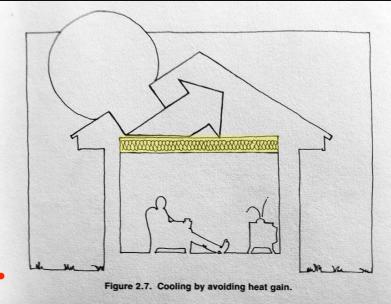
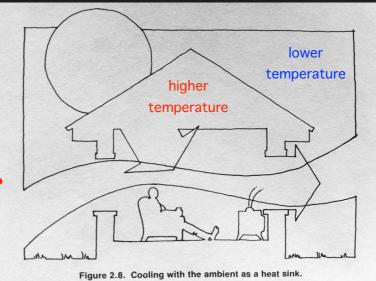


iek


						_
1.	FII	טוא	ΔN	IE NI	$T\Delta$	
	U	שוו	\neg IYI			டப


- 11 Passive Cooling
 - 1. fundamentals


..............

iek

- heat flows from high temperature areas to low temperature areas
- reverse flow can only be induced by feeding additional energy into the thermal system
- passive cooling seeks to use natural heat flows whenever possible
- strategies:
 - reduce heat gains (internal and external)
 - open a high-to-low temperature heat flow path to divert the excess heat (heat removal into a suitable heat sink)

11 Passive Cooling

fundamentals

• available natural heat sinks:

ambient air (ventilation)

evaporative cooling (adiabatic)

radiative cooling (deep night sky)

- although limited in their capacity:
- important first steps towards reducing cooling loads
- hence: passive cooling

11 Passive Cooling

1. fundamentals

iek

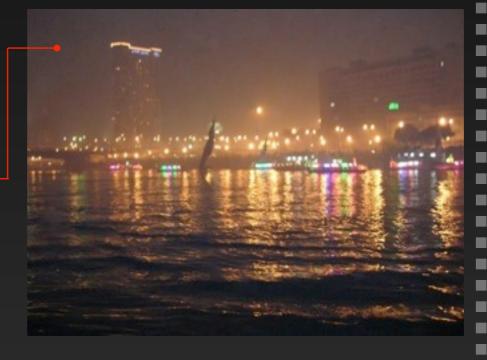
2. SPECIFICS OF COOLING

- 11 Passive Cooling
 - 1. fundamentals

2. specifics of cooling

University of Stuttgart Institute of Design and Construction

SPECIFICS OF COOLING


- crucial to passive heating: access to solar energy during winter
- crucial to passive cooling: availability of heat sinks for heat rejection and redirection
- important limiting factor: humidity

high humidity limits evaporative cooling to high temperatures

haze blocks radiative cooling to the night sky

- 11 Passive Cooling
- 1. fundamentals
- 2. specifics of cooling

ek

SPECIFICS OF COOLING

 crucial to passive heating: reducing heat losses by means of

thermal insulation

low infiltrations

crucial to passive cooling: blocking heat gains by

solar radiation (windows!)

internal heat sources

latent sources (humidity)

... AND USING HEAT SINKS

 temperature differential beween indoor and outdoor air is smaller for cooling purposes

hence: smaller impact of conduction and infiltration

■ 11 Passive Cooling

. fundamentals

:

2. specifics of cooling

3. COOLING MECHANISMS

- 11 Passive Cooling
 - fundamentals

- 2. specifics of cooling
- 3. cooling mechanisms

iek

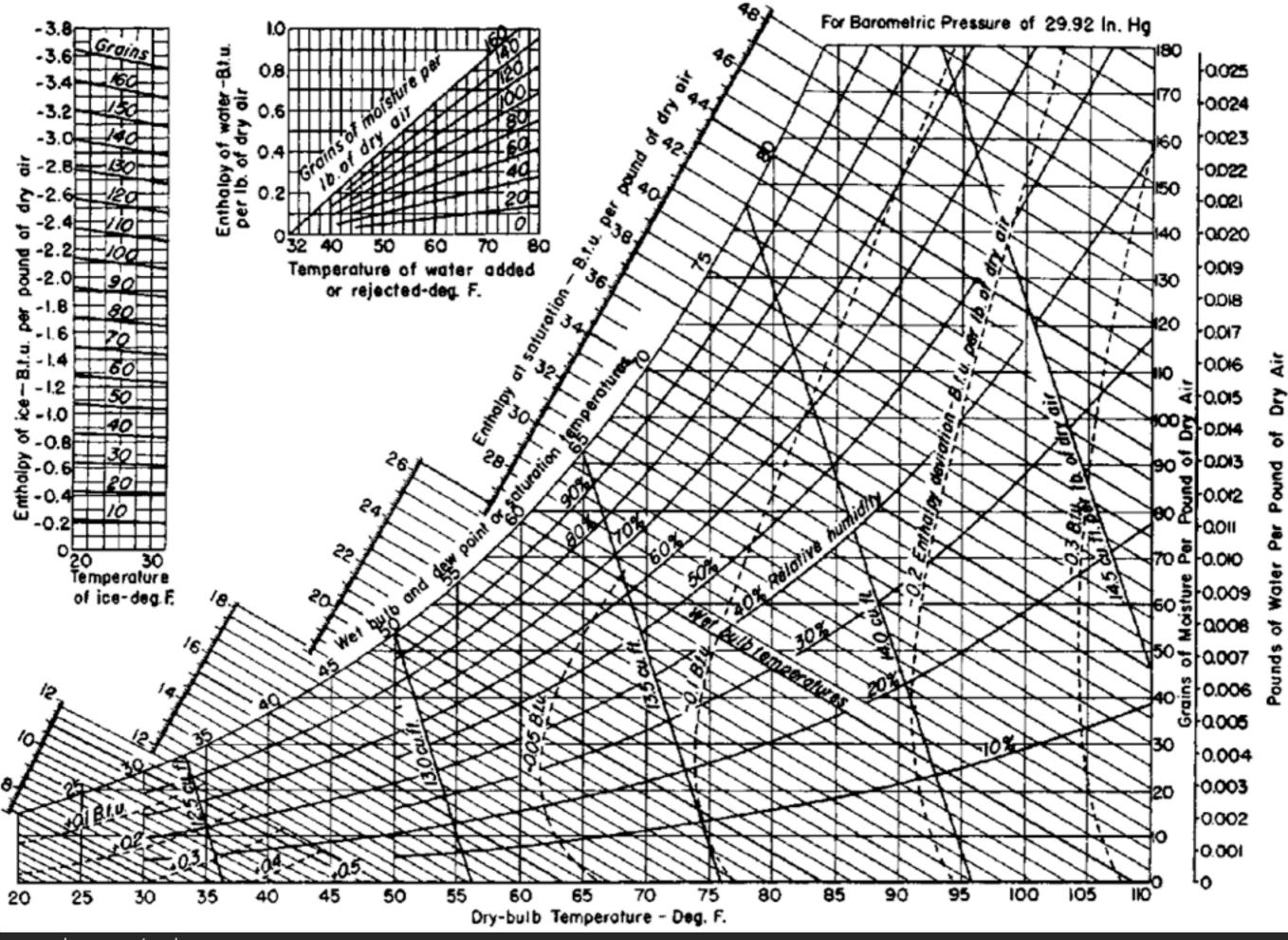
COOLING MECHANISMS

- relative humidity: measure of concentration of water vapour
- expressed as a percentage of the water vapour air can hold at a particular temperature
- sensible heat: associated with change in air temperature
- latent heat: associated with change in the moisture content of air
- dewpoint temperature: temperature at which water vapour begins to condensate (relative humidity 100%)

■ 11 Passive Cooling

1. fundamentals

:


:

=

:

- 2. specifics of cooling
- 3. cooling mechanisms

iek

COOLING MECHANISMS

- average residential building:60 to 80% sensible heat gains
 - 40 to 20% latent heat gains
- cooling strategies need to deal with both types of loads

■ 11 Passive Cooling

1. fundamentals

.........

...

:

•

:

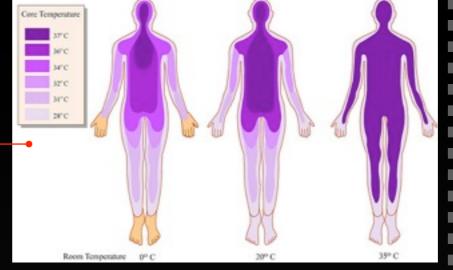
- 2. specifics of cooling
- 3. cooling mechanisms

Prof. J. L. Moro

University of StuttgartInstitute of Design and Construction

4. THERMAL COMFORT IN HOT CLIMATES

- 11 Passive Cooling
 - 1. fundamentals


- 2. specifics of cooling
 - cooling mechanisms
- thermal comfort in hot climates

University of Stuttgart Institute of Design and Construction

THERMAL COMFORT

- human thermal comfort:
 - when heat flows in the human thermal system are balanced
 - when the internal body temperature is near 37° C
- permanent internal heat production of 100 W
- feeling hot: when heat is absorbed and produced faster than it is lost
- in that case, bodily responses set in like:
 perspiration (evaporative cooling)
 additional blood flow to skin surface
 lethargic feeling to reduce activity—

11 Passive Cooling

- . fundamentals
- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates

iek

THERMAL COMFORT

• environmental determinants of comfort:

```
air temperature
relative humidity
air motion
mean radiant temperature (MRT)
```

 any combinations of these are liable to produce the required comfort

■ 11 Passive Cooling

I. fundamentals

.......

:

:

:

:

:

- 2. specifics of cooling
- . cooling mechanisms
- 4. thermal comfort in hot climates

5. REDUCTION OF COOLING LOADS

■ 11 Passive Cooling

fundamentals

- 2. specifics of cooling
- cooling mechanisms
- thermal comfort in hot climates
- reduction of cooling loads

University of Stuttgart

Institute of Design and Construction

REDUCTION OF COOLING LOADS

- main heat flows in a building:
 - conduction through the building envelope
 - ventilation
 - unintended infiltration
 - solar heat gains through windows
 - internal heat generation

■ 11 Passive Cooling

1. fundamentals

:

=

:

:

:

- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads

University of Stuttgart

Institute of Design and Construction

REDUCTION OF COOLING LOADS CONDUCTION

- thermal conduction: sensible loads dependent on differential between indoor and outdoor air temperatures
- conduction cooling loads thus increased by solar gains on the outside surface of the envelope (increased temperature differential)
- influencing factors:
 - temperature difference across the envelope's section (delta T)
 - insulating characteristics of the section thermal capacitance of internal masses
- control of conduction heat gains through:
 - adding insulation
 - reducing the surface area (A/V-ratio)
 - reducing the temperature of the exteriour surface

11 Passive Cooling

- 1. fundamentals
- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 5.1 conduction

University of Stuttgart

Institute of Design and Construction

REDUCTION OF COOLING LOADS INFILTRATION, VENTILATION

- infiltration, ventilation cooling load are the result of the flow of warmer and more humid air into the building (both sensible and latent heat components)
- when internal heat and solar gains drive the indoor temperature above the outdoor temperature, infiltration and ventilation may reduce cooling loads
- since infiltration is hardly controllable it should be curtailed (infiltration barrier)
- however, ventilation (natural or forced) needs be controllable to allow for minimum hygienic air exchange and for necessary cooling

■ 11 Passive Cooling

1. fundamentals

:

=

:

:

- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 5.1 conduction
- 5.2 infiltration, ventilation

University of Stuttgart

Institute of Design and Construction

REDUCTION OF COOLING LOADS SOLAR LOADS

- solar loads affect both opaque and glazed surfaces
- however, gains through glazed surfaces significantly exceed those through opaque walls
- hence, orientation and size of transparent or translucent surfaces are to be carefully designed
- since solar gains through windows are desirable in winter, glazed surfaces should be adaptive (solar protection)
- horizontal, east and west oriented glass produces the largest cooling loads, south oriented the least
- external shading is the most efficient method to reduce solar loads

■ 11 Passive Cooling

- 1. fundamentals
- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 5.1 conduction
- 5.2 infiltration, ventilation
- 5.3 solar loads

=

:

University of Stuttgart

Institute of Design and Construction

REDUCTION OF COOLING LOADS INTERNAL HEAT GAINS

- internal heat gains are due to:
 presence of people
 - mechanical and electrical equipment
- sensible gains: e. g. light bulb
- latent gains: e. g. human respiration, bathing, gas combustion (water vapour)
- excess lighting due to solar shading increases cooling loads significantly (paradox)

■ 11 Passive Cooling

I. fundamentals

:

=

:

:

:

:

- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 5.1 conduction
- 5.2 infiltration, ventilation
- 5.3 solar loads
- 5.4 internal heat gains

University of Stuttgart

Institute of Design and Construction

6. VENTILATION FOR COOLING PURPOSES

■ 11 Passive Cooling

fundamentals

- 2. specifics of cooling
 - cooling mechanisms
- thermal comfort in hot climates
- reduction of cooling loads
- 5.1 conduction
- 5.2 infiltration, ventilation
- 5.3 solar loads
- 5.4 internal heat gains
 - ventilation for cooling purposes

□ iek

University of Stuttgart

Institute of Design and Construction

VENTILATION FOR COOLING PURPOSES

- ventilation provides cooling by carrying away heat by means of moving air (natural or forced movement)
- may involve either the building (open system) or the human body (closed system)
- prerequisite: outdoor air temperature must be below indoor air temperature (building cooling)
- atmosphere is a heat sink with virtually unlimited capacity
- buildings can be ventilated at night when the ambient air is cool to take advantage of the storing effect of thermal masses (heat sink)

■ 11 Passive Cooling

1. fundamentals

=

:

:

- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 5.1 conduction
- 5.2 infiltration, ventilation
- 5.3 solar loads
- 5.4 internal heat gains
- 6. ventilation for cooling purposes

iek

University of Stuttgart

Institute of Design and Construction

VENTILATION FOR COOLING PURPOSES

- main ventilation mechanisms available:
 - wind-driven ventilation
 - stack-effect ventilation
 - forced ventilation (electric fans)
 - solar chimneys
 - ceiling and space fans

■ 11 Passive Cooling

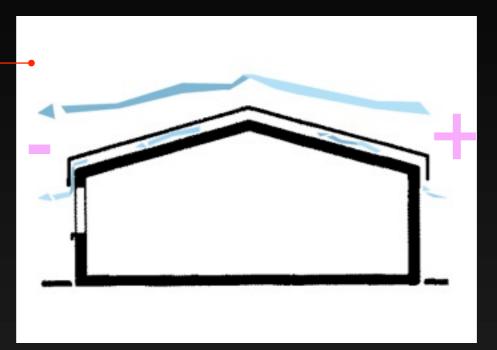
1. fundamentals

:

:

:

- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 5.1 conduction
- 5.2 infiltration, ventilation
- 5.3 solar loads
- 5.4 internal heat gains
 - 6. ventilation for cooling purposes

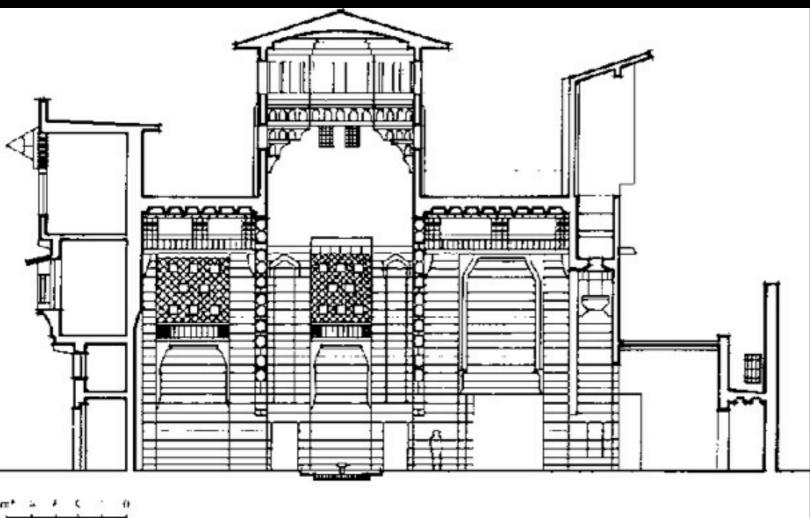

iek

University of Stuttgart

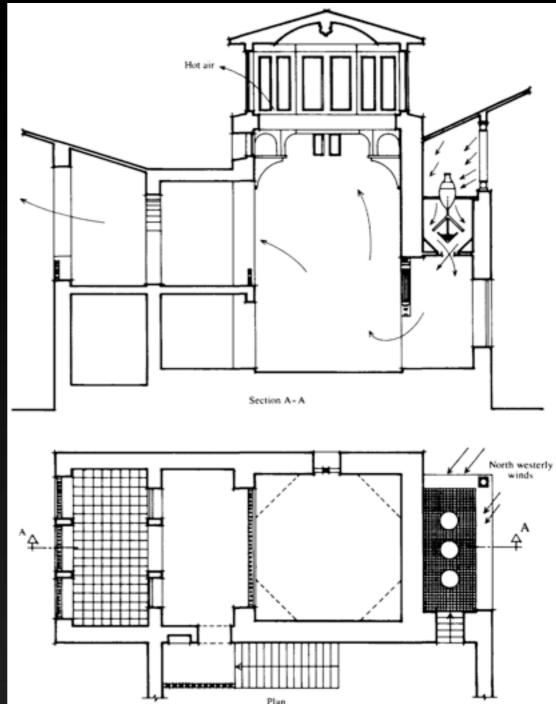
Institute of Design and Construction

VENTILATION FOR COOLING PURPOSES WIND-INDUCED VENTILATION

- air movement is induced by air pressure differential between windward and leeward sides of the building
- amount of wind-induced flow is proportional to window area
- fully-opening windows (casement, awning windows) are convenient
- architectural features like wind towers (e. g. malqaf, badgir) may benefit the cooling effect

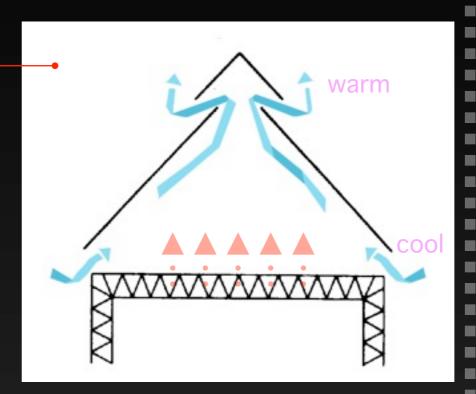

11 Passive Cooling

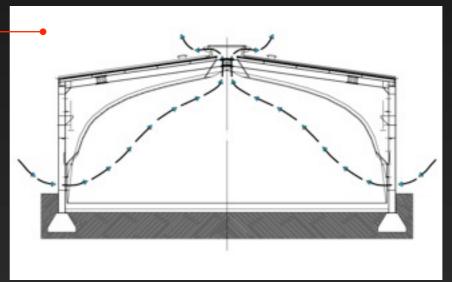
- . fundamentals
- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 5.1 conduction
- 5.2 infiltration, ventilation
- 5.3 solar loads


:

- 5.4 internal heat gains
- 6. ventilation for cooling purposes
- 6.1 wind-induced ventilation

iek




traditional type of malqaf ventilation

VENTILATION FOR COOLING PURPOSES STACK-EFFECT VENTILATION

- warmer air lis lighter and thus more buoyant than cooler air
- the temperature differential (stacking) induces a forced upward flow
- comparatively weak form of ventilation with small flow volumes
- especially adequate for large halllike spaces

11 Passive Cooling

- . fundamentals
- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 5.1 conduction
- 5.2 infiltration, ventilation
- 5.3 solar loads
- 5.4 internal heat gains
- 6. ventilation for cooling purposes
- 6.1 wind-induced ventilation
- 6.2 stack-effect ventilation

Prof. J. L. Moro

University of StuttgartInstitute of Design and Construction

VENTILATION FOR COOLING PURPOSES FORCED VENTILATION

- most consistently effective means of providing ventilation
- relatively small amount of energy required for operation
 - interiour fans provide air circulation inside:
 remove heat from the occupants
 without changing the indoor air temperature
- potential problems: excess air speed and noise

11 Passive Cooling

- . fundamentals
- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 5.1 conduction
- 5.2 infiltration, ventilation
- 5.3 solar loads
- 5.4 internal heat gains
- 6. ventilation for cooling purposes
- 6.1 wind-induced ventilation
- 6.2 stack-effect ventilation
- 6.3 forced ventilation

iek

University of Stuttgart

Institute of Design and Construction

VENTILATION FOR COOLING PURPOSES INTERIOUR THERMAL MASS COOLING

- extensively used to:
 store excess heat during the day
 release it at night
- however: lack of large temperature differential
- driving force: day-to night variation in ambient temperature (benefits the cooling effect)
- hence: increased air circulation during nighttime required (nocturnal ventilation)
- thermal masses increase nighttime indoor temperatures (as compared to lightweight construction)
- exposed thermal mass surfaces required

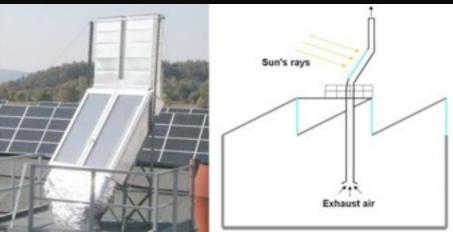
11 Passive Cooling

- 1. fundamentals
- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 5.1 conduction
- 5.2 infiltration, ventilation
- 5.3 solar loads

:

:

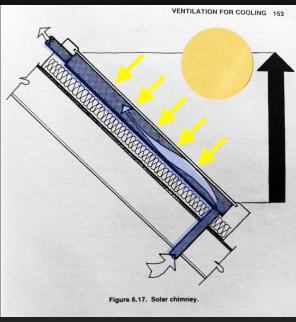
- 5.4 internal heat gains
- 6. ventilation for cooling purposes
- 6.1 wind-induced ventilation
 - 6.2 stack-effect ventilation
 - 6.3 forced ventilation
 - 6.4 interiour thermal mass cooling


University of Stuttgart

Institute of Design and Construction

VENTILATION FOR COOLING PURPOSES SOLAR CHIMNEYS

- solar chimneys are stack-effect ventilators
- driving force: passive solar heat
- also called: solar-enhanced ventilators
- inlet draws air from indoors
- outlet discharges to the outdoors
- as indoor air evacuates, (cooler) outdoor air flows into the building



11 Passive Cooling

- . fundamentals
- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 5.1 conduction
- 5.2 infiltration, ventilation
- 5.3 solar loads
- 5.4 internal heat gains
- 6. ventilation for cooling purposes
- 6.1 wind-induced ventilation
- 6.2 stack-effect ventilation
- 6.3 forced ventilation
- 6.4 interiour thermal mass cooling
- 6.5 solar chimneys

iek

7. EVAPORATIVE COOLING

■ 11 Passive Cooling

fundamentals

- 2. specifics of cooling
- cooling mechanisms
- thermal comfort in hot climates
- reduction of cooling loads
- 5.1 conduction
- 5.2 infiltration, ventilation
- 5.3 solar loads
- 5.4 internal heat gains
- 6. ventilation for cooling purposes
- 6.1 wind-induced ventilation
- 6.2 stack-effect ventilation
- 6.3 forced ventilation
- 6.4 interiour thermal mass cooling
 - 6.5 solar chimneys
 - evaporative cooling

University of Stuttgart

Institute of Design and Construction

EVAPORATIVE COOLING

- by evaporation of water the sensible heat content decreases
- heat is absorbed by the phase change of water (liquid to gaseous)
- hence, moisture content of the air rises
- dry ambient air is beneficial to this process
- limit of the cooling process: when relative humidity reaches the saturation point (100%)
- direct evaporative cooling: misting of the inlet air

■ 11 Passive Cooling

1. fundamentals

- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 5.1 conduction
- 5.2 infiltration, ventilation
- 5.3 solar loads
- 5.4 internal heat gains
- 6. ventilation for cooling purposes
- 6.1 wind-induced ventilation
- 6.2 stack-effect ventilation
- 6.3 forced ventilation
 - 6.4 interiour thermal mass cooling
 - 6.5 solar chimneys
 - 7. evaporative cooling

University of Stuttgart

Institute of Design and Construction

8. RADIATIVE COOLING

■ 11 Passive Cooling

fundamentals

- 2. specifics of cooling
- cooling mechanisms
- thermal comfort in hot climates
- reduction of cooling loads
- 5.1 conduction
- 5.2 infiltration, ventilation
- 5.3 solar loads
- 5.4 internal heat gains
- 6. ventilation for cooling purposes
- 6.1 wind-induced ventilation
- 6.2 stack-effect ventilation
- 6.3 forced ventilation
- 6.4 interiour thermal mass cooling
 - 6.5 solar chimneys
 - evaporative cooling
 - radiative cooling

University of Stuttgart

Institute of Design and Construction

RADIATIVE COOLING

- outer space has a constant temperature near absolute zero, i. e. -273° C
- although warmer, the sky all the same provides a suitable natural heat sink for cooling
- heat is rejected through radiation heat transfer
- a temperature differential is necessary for this effect to develop
- unobstructed direct line between radiant objects is required (to ,see 'each other)
- clear, dry climates are beneficial

■ 11 Passive Cooling

1. fundamentals

- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 5.1 conduction
- 5.2 infiltration, ventilation
- 5.3 solar loads
- 5.4 internal heat gains
- 6. ventilation for cooling purposes
- 6.1 wind-induced ventilation
- 6.2 stack-effect ventilation
- 6.3 forced ventilation
 - 6.4 interiour thermal mass cooling
 - 6.5 solar chimneys
 - 7. evaporative cooling
 - 8. radiative cooling

University of Stuttgart

Institute of Design and Construction

RADIATIVE COOLING

• architectural applications:

sleeping on terraces

roof pond cooling

water surface radiates heat to the night sky

open water ponds or

large bags of water (sprayed)

movable insulation panels during daytime

11 Passive Cooling

- I. fundamentals
- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 5.1 conduction
- 5.2 infiltration, ventilation
- 5.3 solar loads
- 5.4 internal heat gains
- 6. ventilation for cooling purposes
- 6.1 wind-induced ventilation
- 6.2 stack-effect ventilation
- 6.3 forced ventilation
 - 6.4 interiour thermal mass cooling
 - 6.5 solar chimneys
 - 7. evaporative cooling
 - 8. radiative cooling

iek

Prof. J. L. Moro

University of Stuttgart

Institute of Design and Construction

closing of the umbrellas in the courtyard of the Mosque in Madinah in the evening in order to benefit from the nightly radiation to the cool

deep sky

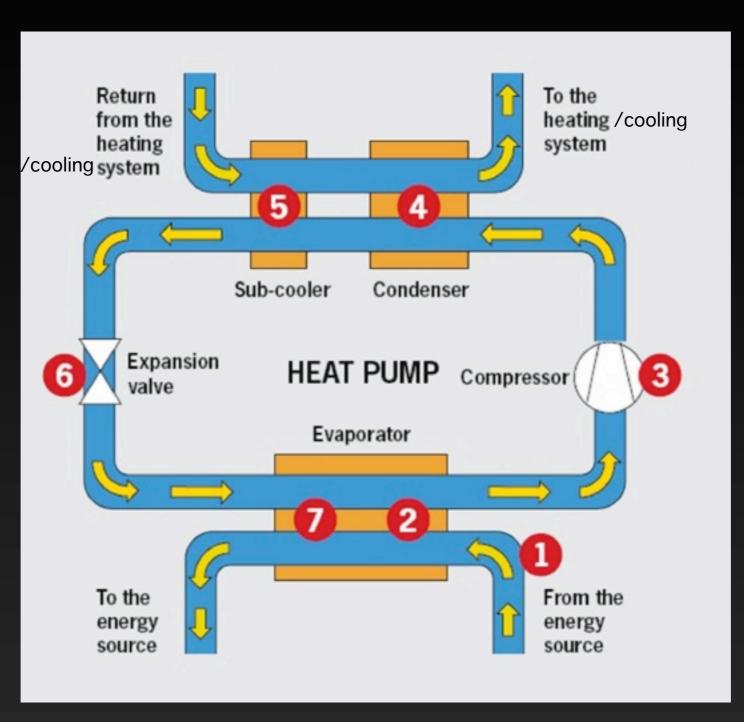
■ 11 Passive Cooling

- . fundamentals
- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 5.1 conduction
- 5.2 infiltration, ventilation
- 5.3 solar loads
- 5.4 internal heat gains
- 6. ventilation for cooling purposes
- 6.1 wind-induced ventilation
- 6.2 stack-effect ventilation
- 6.3 forced ventilation
 - 6.4 interiour thermal mass cooling
 - 6.5 solar chimneys
 - 7. evaporative cooling
 - 8. radiative cooling

iek

9. HEAT PUMPS

■ 11 Passive Cooling


fundamentals

- 2. specifics of cooling
- cooling mechanisms
- thermal comfort in hot climates
- reduction of cooling loads
- ventilation for cooling purposes
- 6.1 wind-induced ventilation
- 6.2 stack-effect ventilation
- 6.3 forced ventilation
- 6.4 interiour thermal mass cooling
- 6.5 solar chimneys
- **7**. evaporative cooling
- 8. radiative cooling
- **9**. heat pumps

□ iek

University of Stuttgart

Institute of Design and Construction

basic working principle of a heat pump for cooling or heating purposes

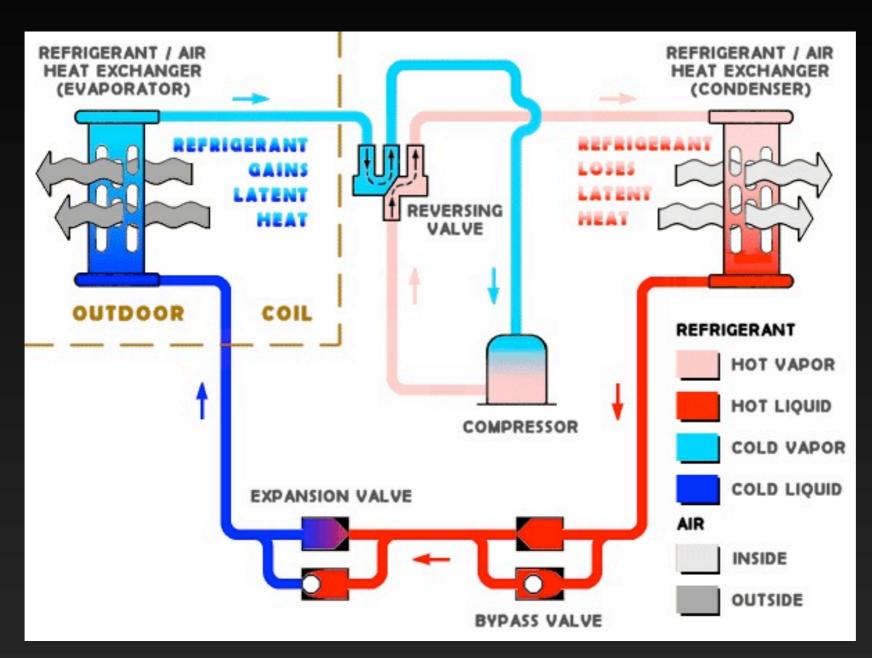
■ 11 Passive Cooling

. fundamentals

:

:

:


.......

:

- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 6. ventilation for cooling purposes
- 6.1 wind-induced ventilation
- 6.2 stack-effect ventliation
- 6.3 forced ventilation
 - 6.4 interiour thermal mass cooling
- 6.5 solar chimneys
- 7. evaporative cooling
- 8. radiative cooling
- 9. heat pumps

University of StuttgartInstitute of Design and Construction

basic working principle of an air-source heat pump for cooling or heating purposes

11 Passive Cooling

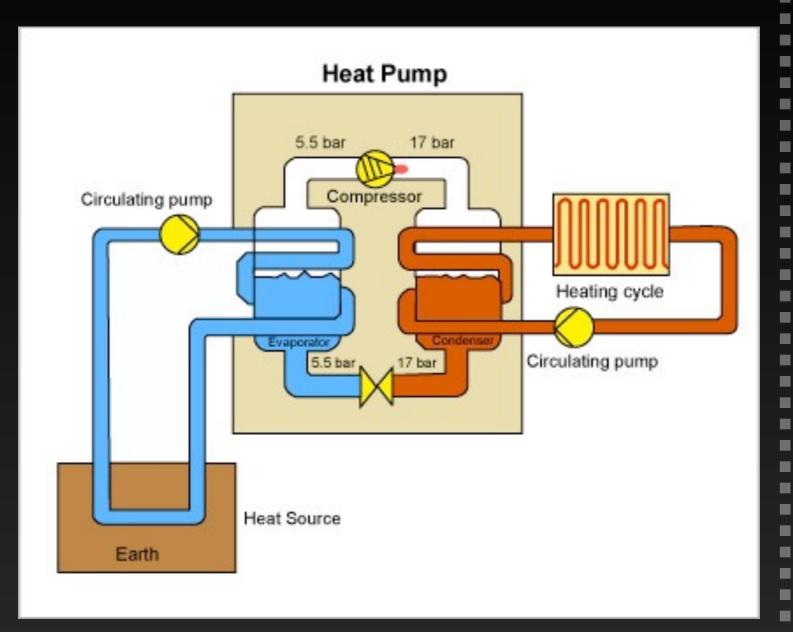
I. fundamentals

:

=

=

:


- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 6. ventilation for cooling purposes
- 6.1 wind-induced ventilation
- 6.2 stack-effect ventliation
- 6.3 forced ventilation
- 6.4 interiour thermal mass cooling
- 6.5 solar chimneys
 - 7. evaporative cooling
- 8. radiative cooling
- 9. heat pumps
- 9.1 air-source heat pumps

University of StuttgartInstitute of Design and Construction

basic working principle of a water-source heat pump for cooling or heating purposes

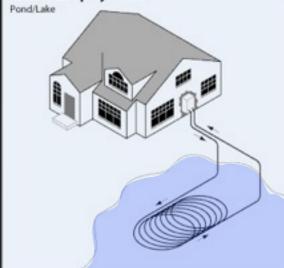
■ 11 Passive Cooling

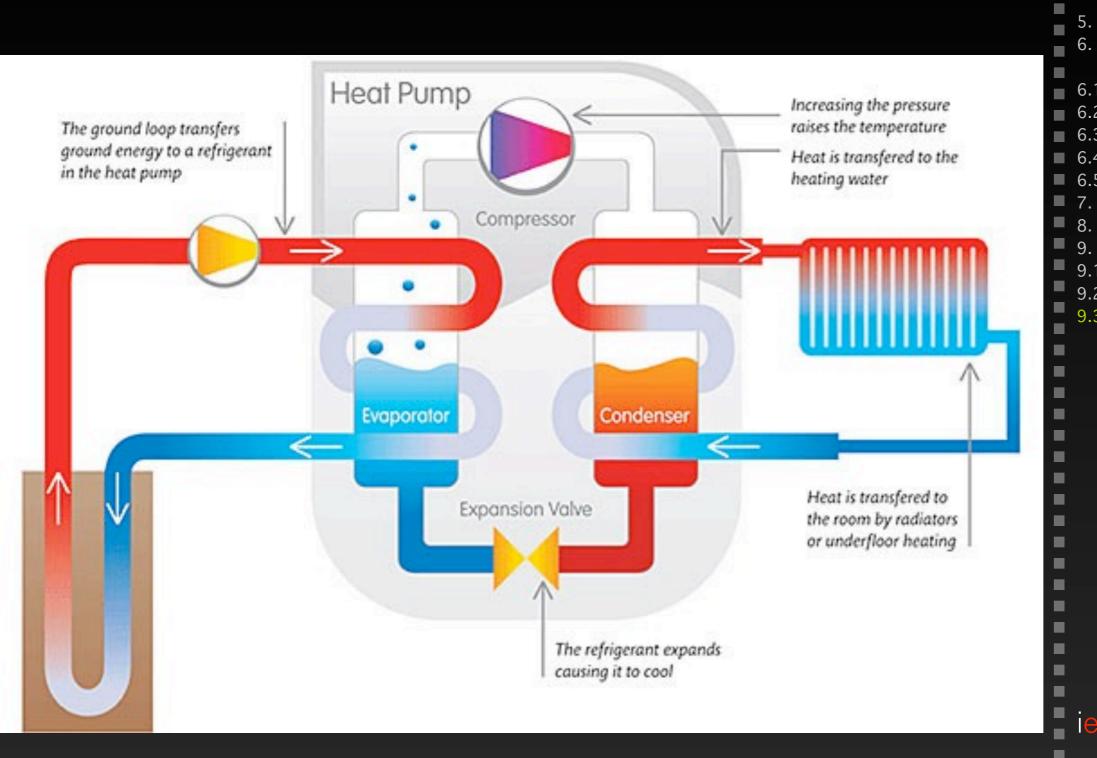
. fundamentals

- 2. specifics of cooling
- B. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 6. ventilation for cooling purposes
- 6.1 wind-induced ventilation
- 6.2 stack-effect ventliation
- 6.3 forced ventilation
- 6.4 interiour thermal mass cooling
- 6.5 solar chimneys
- 7. evaporative cooling
- 8. radiative cooling
- 9. heat pumps
 - 9.1 air-source heat pumps
 - 9.2 water-source heat pumps

University of Stuttgart

Institute of Design and Construction




■ 11 Passive Cooling

- . fundamentals
- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 6. ventilation for cooling purposes
- 6.1 wind-induced ventilation
- 6.2 stack-effect ventliation
- 6.3 forced ventilation
- 6.4 interiour thermal mass cooling
- 6.5 solar chimneys
- 7. evaporative cooling
- 8. radiative cooling
- 9. heat pumps
- 9.1 air-source heat pumps
 - 9.2 water-source heat pumps

Closed Loop Systems Pond/Lake

iek

■ 11 Passive Cooling

fundamentals

- specifics of cooling
- cooling mechanisms
- thermal comfort in hot climates
- reduction of cooling loads
- ventilation for cooling purposes
- 6.1 wind-induced ventilation
- 6.2 stack-effect ventliation
- 6.3 forced ventilation
 - interiour thermal mass cooling
- 6.5 solar chimneys
 - evaporative cooling
 - radiative cooling
 - 9. heat pumps
 - 9.1 air-source heat pumps
 - 9.2 water-source heat pumps
 - earth-coupled heat pumps

Prof. J. L. Moro

University of Stuttgart Institute of Design and Construction

■ 11 Passive Cooling

- . fundamentals
- 2. specifics of cooling
- 3. cooling mechanisms
- 4. thermal comfort in hot climates
- 5. reduction of cooling loads
- 6. ventilation for cooling purposes
- 6.1 wind-induced ventilation
- 6.2 stack-effect ventliation
- 6.3 forced ventilation
- 6.4 interiour thermal mass cooling
- 6.5 solar chimneys
- 7. evaporative cooling
- 8. radiative cooling
- 9. heat pumps
- 9.1 air-source heat pumps
 - 9.2 water-source heat pumps
 - 9.3 earth-coupled heat pumps

ek

University of Stuttgart

Institute of Design and Construction