

MOVING PEOPLE - PLANNING A VT SYSTEM

- How many people need to be transported in a 5 min period? Arrival rates as % of the population
- How long do passengers have to wait for a lift? AWT
- How long do passengers take to get to their destination?
- · How many lifts are needed?
- · How big do the lifts need to be?
- How fast do the lifts need to be?
- How many journeys per year will the lifts make?

CHOOSING THE RIGHT EQUIPMENT

Hydraulic Lifts are best for:-

- Heavy Loads > 2000kg
- Low travel < 18metres
- Low number of starts per hour max 120
- Temperature stable environments
- Slow travel speeds max 1 m/sec
- Life expectancy < 20 years
- Some Machine room less versions

CHOOSING THE RIGHT EQUIPMENT

Traditional Electric lifts are best for:-

- Busy lifts with >180 starts per hour
- Fast performance up to 18m/sec, (64.8km/Hr)
- Excellent ride quality
- Longer travel
- Loads up to 5000kg
- Life expectancy 25 to 40 years!

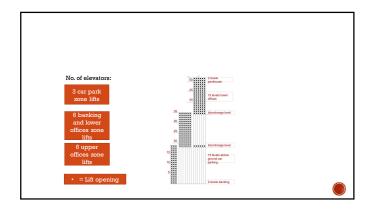
CHOOSING THE RIGHT EQUIPMENT

Machine Room Less (MRL) lifts

- Do not need a machine room and so save space
- Limited to about 40m travel
- Limited to 180 starts per hour
- Limited to 3.5m/s
- Limited to 3000kg
- Efficient gearless drives are best
- Life expectancy <20 years

VERTICAL CIRCULATION

- Vertical circulation
- Configuration
- Floor-plate design
- The function of Service Core
- Service core types & placement
 Service Core & Building Force
- Service Core & Building Economy
 Elevator design & configuration
- Population density
- Traffic analysis
- Quality of ride
- Service-core layout & space requirements


VERTICAL CIRCULATION

- Cores = service cores = risers
- Contains:
- · Elevator shafts
- Elevator lobbies
- Main & escape stairways
- · Riser-ducts
- Other service rooms
- Elevators = MAIN vertical circulation system

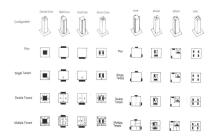
CONFIGURATION

At initial design stage, designer DETERMINES:

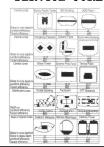
- Buildable net rentable areas (NRA)
- Gross floor areas (GFA)
- Typical & a typical floor-plates
- Prepare a diagram + propose elevator configuration:
 No. of banks
 No. of stops
- Transfer floor(s)

DESIGNER'S CONSIDERATION:

- Typical floor plate sizes
- Typical floor plate efficiency
- Staircase positions
- · Tenancy options · View outward
- M&E risers and routes
- Structural system options etc

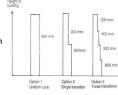

FLOOR PLATE DESIGN

- · Staircase usually grouped with elevators
- As means of escape & accessibility
- Same goes with M&E riser ducts
- Aspects that affect the floor-plate design: –
- · Direction of best views out
- Permissible ground floor plinth are
- Car-parking grids in relation with floor-plate structural configuration


Floor-plate efficiency should not be less than 75%

FUNCTION OF SERVICE CORE Mechanical Zone 3 Mechanical Zone 2 Mechanical Zone 1 Diagram of Elevators (three zone system in which users have to change floors after each zone)

SERVICE CORE TYPES & PLACEMENT



SERVICE CORE TYPES & PLACEMENT

SERVICE CORE & BUILDING ECONOMY

- Minimization of material costs
- Optimization of core geometry
- Minimization of core area
- Minimization of construction time

BENEFITS OF A PERIPHERAL CORE POSITION:

- No fire-fighting pressurization duct is needed
- Good view out
- · Natural ventilation
- Natural sunlight
- ${\mbox{\ensuremath{\bullet}}}$ A safer building in the event of total power failure
- Solar-buffers & energy savings

REQUIREMENTS FOR ELEVATOR SELECTION SERVICE

2 common performance criteria: -Average waiting interval (AWI, in seconds) -5-minute handling capacity
 EXCELLENT SERVICE
 GOOD SERVICE
 FAIR SERVICE

 COMMERCIAL BUILDING
 28 secs
 30 secs
 35 secs

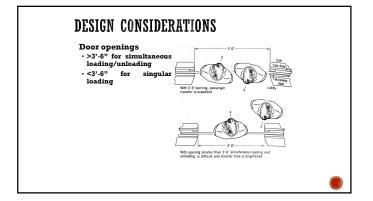
 Up-peak Interval handing capacity
 28 secs
 30 secs
 35 secs

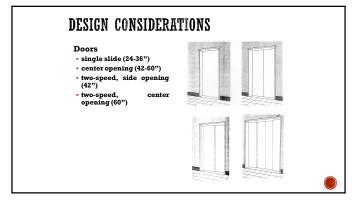
 PhoreL BuilDING 2 way lobby traffic 5-minute up-peak handing capacity
 14 - 15%
 13 - 13.5%
 11 - 12%

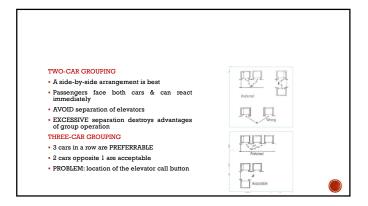
 APARTMENT BUILDING 2 way lobby traffic 5-minute up-peak
 35 - 40 secs
 50 - 65 secs
 70 - 75 secs

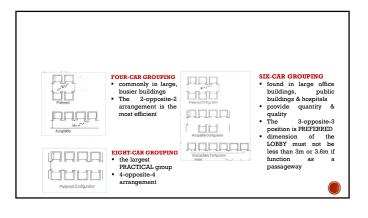
 CARPARK BUILDING 2 way lobby traffic 6 way lobby traffic 6 way lobby traffic 7 way lobby traffic 8 secs
 50 secs
 50 secs

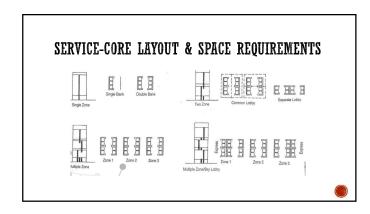
 5-minute up-peak
 35 secs
 40 secs
 50 secs

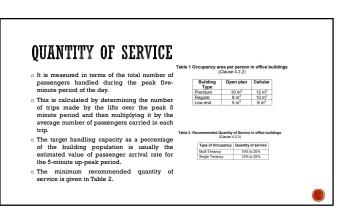

 5-minute up-peak
 135 secs
 40 secs
 50 secs


 5-minute up-peak
 135 secs
 40 secs
 50 secs


ELEVATOR DESIGN & CONFIGURATION


Elevator design should give optimum:


- Number of elevators
- Types of elevators
- Elevator capacities
- Arrangement o elevator



QUALITY OF SERVICE

- $_{\odot}$ It is very difficult to get real indications of passenger waiting time and lobby queuing from the classic calculation models.
- Therefore, interval is considered as the measure. During peak traffic, the interval or the average time between successive arrivals of the lift cars at the main lobby is generally considered as an indicator of passenger waiting time.
- $_{\odot}\,$ Table 3 gives the quality of service based on interval

Table 3 Recommended Quality of Service in office buildings (Clause 4.2.4)

Quality of service	Interval (sec)
Excellent	< 25
Very Good	25 to less than 30
Good	30 to less than 35
Fair	35 to less than 40
Poor	40 to less than 45
Unsatisfactory	45 and above

LIFT SPEED

For passenger lifts in a residential building the following general recommendations can be followed:

SI No.	No. of Floors	Speed m/s
i)	Upto 15	1.0 to 1.5
ii)	16 - 20	1.5 to 1.75
iii)	21 - 30	1.75 to 2.5
iv)	31 - 45	3.0 to 4.0
v)	46 - 60	4.0 to 6.0
vi)	Above 60	6.0 and above